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Abstract—We develop a projected Nesterov’s proximal-gradient
(PNPG) approach for sparse signal reconstruction that combines
adaptive step size with Nesterov’s momentum acceleration. The
objective function that we wish to minimize is the sum of a
convex differentiable data-fidelity (negative log-likelihood (NLL))
term and a convex regularization term. We apply sparse signal
regularization where the signal belongs to a closed convex set
within the closure of the domain of the NLL; the convex-set
constraint facilitates flexible NLL domains and accurate signal
recovery. Signal sparsity is imposed using the `1-norm penalty
on the signal’s linear transform coefficients. The PNPG approach
employs a projected Nesterov’s acceleration step with restart and
a duality-based inner iteration to compute the proximal mapping.
We propose an adaptive step-size selection scheme to obtain a good
local majorizing function of the NLL and reduce the time spent
backtracking. Thanks to step-size adaptation, PNPG converges faster
than the methods that do not adjust to the local curvature of
the NLL. We present an integrated derivation of the momentum
acceleration and proofs of O.k�2/ objective function convergence
rate and convergence of the iterates, which account for adaptive
step size, inexactness of the iterative proximal mapping, and the
convex-set constraint. The tuning of PNPG is largely application
independent. Tomographic and compressed-sensing reconstruction
experiments with Poisson generalized linear and Gaussian linear
measurement models demonstrate the performance of the proposed
approach.

Index Terms—Convex optimization, Nesterov’s momentum accel-
eration, sparse signal reconstruction, Poisson compressed sensing,
proximal-gradient methods.

I. Introduction

Most natural signals are well described by only a few signif-
icant coefficients in an appropriate transform domain, with the
number of significant coefficients much smaller than the signal
size. Therefore, for a vector x 2 Rp that represents the signal
and an appropriate sparsifying dictionary matrix ‰, ‰H x is a
signal transform-coefficient vector with most elements having
negligible magnitudes. Real-valued ‰ 2 Rp�p0 can accommo-
date discrete wavelet transform (DWT) or gradient-map sparsity
with anisotropic total-variation (TV) sparsifying transform (with
‰ D Œ‰v ‰h�); a complex-valued ‰ D ‰v C j‰h 2 Cp�p0

can accommodate gradient-map sparsity and the 2D isotropic
TV sparsifying transform; here ‰v; ‰h 2 Rp�p0 are the ver-
tical and horizontal difference matrices similar to those in [1,
Sec. 15.3.3]. The idea behind compressed sensing [2] is to sense
the significant components of ‰H x using a small number of
measurements; here, “H ” denotes the conjugate transpose.
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We use the negative log-likelihood (NLL) (data-fidelity) func-
tion L.x/ to describe the noisy measurement process. Consider
signals x that belong to a closed convex set C and assume

C � cl.domL/ (1)

which ensures that L.x/ is computable for all x 2 int C . If
C n domL is not empty, then L.x/ is not computable in it,
which needs special attention; see Section III. The nonnegative
signal scenario with

C D Rp
C (2)

is of significant practical interest and applicable to X-ray
computed tomography (CT), single photon emission computed
tomography (SPECT), positron emission tomography (PET),
and magnetic resonance imaging (MRI), where the pixel values
correspond to inherently nonnegative density or concentration
maps [3]. Harmany et al. consider such a nonnegative sparse
signal model and develop in [4] and [5] a convex-relaxation
sparse Poisson-intensity reconstruction algorithm (SPIRAL)
and a linearly constrained gradient projection method for
Poisson and Gaussian linear measurements, respectively. In
addition to signal nonnegativity, other convex-set constraints
have been considered in the literature: prescribed value in the
Fourier domain; box, geometric, and total-energy constraints;
intersections of these sets [6]; and unit simplex [7].

We adopt the analysis regularization framework and minimize

f .x/ D L.x/C ur.x/ (3a)

with respect to the signal x, where L.x/ is a differentiable
convex NLL and

r.x/ D IC .x/C �.x/ (3b)

is a convex regularization term that imposes convex-set con-
straint on x, x 2 C , and sparsity of an appropriate transformed
x through the convex penalty �.x/ [4, 8–11]. Here, u > 0

is a scalar tuning constant that quantifies the weight of the

regularization term, and IC .x/ ,
(

0; x 2 C

C1; otherwise
is the

indicator function. The penalty �.x/ is often selected as the
`1-norm of the signal transform-coefficient vector [11]:

�.x/ D k‰H xk1: (4)

Define the proximal operator for a function r.x/ scaled by � >

0 at argument a 2 Rp:

prox�r a D arg min
x2Rp

1
2
kx � ak22 C �r.x/: (5)
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In this paper (see also [8, 9]), we develop a projected
Nesterov’s proximal-gradient (PNPG) method whose momen-
tum acceleration accommodates adaptive step-size selection and
convex-set constraint on the signal x. Computing the proximal
operator with respect to r.x/ in (3b) needs iteration and
is therefore inexact [12–14]. We establish conditions for the
O.k�2/ convergence rate of the objective function as well as
the convergence of PNPG iterates. These results are the first
for an accelerated proximal-gradient (PG) method with step-size
adaptation (and, therefore, adjustment to the local curvature of
the NLL) that

� establish convergence of the iterates (Theorem 2) and
� incorporate inexact proximal operators into objective func-
tion convergence rate and convergence of the iterates
analyses (Theorems 1 and 2).

We modify the original Nesterov’s acceleration [15, 16] so that
we can establish these results when the step size is adaptive
and adjusts to the local curvature of the NLL. (Local-curvature
adjustments of the NLL by step-size adaptation have also been
used in other algorithms under different contexts in [17–19];
see also the following and discussion in Section IV-A1.) Our
integration of the adaptive step size and convex-set constraint
extends the application of the Nesterov-type acceleration to
more general measurement models than those used previously,
such as the Poisson compressed-sensing scenario described in
Section II-A. Furthermore, a convex-set constraint can bring
significant improvement to signal reconstructions compared with
imposing signal sparsity only, as illustrated in Section V-B.
See Section IV-A for further discussion of O.k�2/ acceleration
approaches [10, 16, 18, 20, 21].
Optimization problems (3a) with composite penalty-term

structure in (3b) have been considered in [4, 12, 22, 23], which
use PG (forward-backward)–type methods with nested inner
iterations. The general optimization approach in these references
is close to ours. Unlike PNPG, these methods approximate
the NLLs whose gradients are not Lipschitz continuous and
[4, 12, 22] do not have fast O.k�2/ convergence-rate guaran-
tees; [22] observes the benefits of larger step sizes and step-
size adaptation. The nested forward-backward splitting iteration
in [23] applies fast iterative shrinkage-thresholding algorithm
(FISTA) [24] in both the outer and inner loops using duality
to formulate the inner iteration; however, it does not employ
step-size adaptation or analyze effects of inexact proximal-
mapping computations. References [11, 23, 25–29] describe
splitting schemes to minimize (3a), where [11, 26] are inspired
by the parallel proximal algorithm (PPXA) [30]. Some splitting
schemes, e.g., [11, 26], apply proximal operations on individual
summands L.x/, u�.x/, and IC .x/, which is useful if all
individual proximal operators are easy to compute. Both [11]
and generalized forward-backward (GFB) splitting [25] require
inner iterations to solve prox�� a for �.x/ in (4) in the general
case where the sparsifying matrix ‰ is not orthogonal. Reference
[23] applies the primal-dual approach by Chambolle and Pock
[27], which allows solving its Poisson reconstruction problems
without approximating the NLL: (3a) is split into L.x/ and
r.x/ and also into L.x/C �.x/ and IC .x/, where the second
approach (termed CP) does not require nested iterations. The
primal-dual splitting (PDS) method in [28, 29] does not require
inner iterations for general L.x/ and sparsifying matrix. GFB

and PDS need Lipschitz-continuous gradient of L and the value
of the Lipschitz constant is important for tuning their parameters.
The convergence rate of both GFB and PDS methods can be
upper-bounded by C=k where k is the number of iterations and
the constant C is determined by values of the tuning proximal
and relaxation constants [31, 32]. In Section V, we show the
performances of CP, GFB, and PDS.
Variable-metric methods with problem-specific diagonal scal-

ing matrices have been considered in [10, 19, 33]; [19] applies
Barzilai-Borwein (BB) step size and an Armijo line search for
the overrelaxation parameter. It accounts for inexact proximal
operator and establishes convergence of iterates but does not
employ acceleration or provide fast convergence-rate guarantees.
[19] does not require the Lipschitz continuity of the gradient of
the NLL in general, except for proving the convergence rate
of the objective function. Salzo [33] analyzes variable-metric
algorithms without acceleration (of the type [19]) and relies
on the uniform continuity of rL for the convergence analysis
of both objective function and iterates; however, [33] does not
account for inexact proximal operators. In practice, special care
is needed in selecting a good scaling matrix, and no clear
guidelines are given in [10, 19, 33] for this selection. Setting
the overrelaxation parameter in [33] to unity leads to a variable-
metric/scaling scheme with an adaptive step size; further, setting
the scaling matrix to identity leads to a PG iteration with
adaptive step size.
Similar to templates for first-order conic solvers (TFOCS)

[18], PNPG code is easy to maintain: for example, the proximal-
mapping computation can be easily replaced as a module by the
latest state-of-the-art solver. Furthermore, PNPG requires min-
imal application-independent tuning; indeed, we use the same
set of tuning parameters in two different application examples.
This is in contrast with the existing splitting methods, which
require problem-dependent (NLL- and u-dependent) tuning, with
convergence speed sensitive to the choice of tuning constants.
We review the notation: 0, 1, I , denoting the vectors of zeros

and ones and identity matrix, respectively; “�” is the element-
wise version of “�”; “T ” and “H ” are transpose and conjugate
transpose, respectively. For a vector a D .ai /

N
iD1 2 RN , define

the projection and soft-thresholding operators:

PC .a/ D arg min
x2C
kx � ak22 (6a)

ŒT �.a/�i D sgn.ai / max
�
jai j � �; 0

�
(6b)

and the elementwise exponential function Œexpı a�i D exp ai .
The projection onto RN

C and the proximal operator (5) for the
`1-norm kxk1 can be computed in closed form:�

PRN
C

.a/
�

i
D max.ai ; 0/; prox�k�k1

a D T �.a/: (6c)

A. Preliminary Results

Define the "-subgradient [34, Sec. 3.3] (" > 0):

@"r.x/ ,
˚
g 2 Rp

j r.z/ � r.x/C .z � x/T g � ";8z 2 Rp
	

(7)

and an inexact proximal operator [14]:
Definition 1: We say that x approximates proxur .a/ with
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"-precision, denoted

x Ñ" proxur a (8)

if .a � x/=u 2 @ "2

2u

r.x/.

Proposition 1: x Ñ" proxur a implies kx � proxur ak2 � ".
Proof: By Definition 1, the following holds for any z:

ur.z/ � ur.x/C .z � x/T .a � x/ � 0:5"2 (9a)

which is equivalent to

0:5kz � ak22 C ur.z/ � 0:5kx � ak22 C ur.x/

C 0:5kz � xk22 � 0:5"2: (9b)

Since z D proxur a minimizes the left-hand side of (9b),
substituting it into (9b) completes the proof.
Now, we adapt the results in [24, Sec. IV-A] and [23,

Sec. 5.2.4] to complex ‰ using the fact that, for complex y

and p, kyk1 D maxkpk1�1 Re.pH y/. The proximal operator
(5) with �.x/ in (4) can be rewritten as

prox�r a D yx.yp/ (10a)

where yp 2 Cp0 solves the dual problem [23, 24]:

yp D arg min
p2H

1
2
kS.p/k22 �

1
2
kS.p/ � yx.p/k22 (10b)

and

H ,
˚
w 2 Cp0

j kwk1 � 1
	

(10c)

S.p/ , a � � Re.‰p/ (10d)
yx.p/ , PC

�
S.p/

�
2 Rp: (10e)

When p 2 H , the objective function in (10b) is differentiable
with respect to the real and imaginary parts of p. When ‰

is real-valued, the optimal yp must be real-valued and hence
(10b) reduces to optimization with respect to p over the unit
hypercube.
The duality gap for the optimization problem (10b) is

G.p/ D �
˚
�
�
yx.p/

�
� yx

T .p/ Re.‰p/
	
C IH .p/: (11)

To simplify the notation, we omit the dependence of
G.p/; yx.p/;S.p/ and yp on a and �. We will add the subscripts
“a;�” to these quantities when we wish to emphasize their
dependence on a and �.
The following proposition extends the result in [14, Sec. 2.1]

to accommodate the composite penalty (3b) that includes the
indicator function IC .x/; if C D Rp , it reduces to [14,
Prop. 2.3]. It can be used to guarantee the "-precision of the
proximal mapping in (8).

Proposition 2: If the duality gap (11) satisfies G.p/ � "2=2,
then

yx.p/ Ñ" prox�r a: (12)

Proof: Finite G.p/ implies p 2 H . Therefore, 0 �

zT Re.‰p/ � �.z/ for all z 2 Rp (see also (4)) and thus

G.p/=� � �
�
yx.p/

�
C Œz � yx.p/�T Re.‰p/ � �.z/: (13)

Use the projection theorem [34, Prop. 1.1.9 in App. B] to obtain

IC .z/ � Œz � yx.p/�T ŒS.p/ � yx.p/�=�: (14)

Adding (13), (14), and "2=.2�/ � G�.p/=� and reorganizing
yields

r.z/ � r
�
yx.p/

�
C Œz � yx.p/�T Œa � yx.p/�=� � "2=.2�/ (15)

where we used (10d), (3b), and IC

�
yx.p/

�
D 0. According to

Definition 1, (12) and (15) are equivalent.
We introduce representative NLL functions (Section II),

describe the proposed PNPG signal reconstruction algorithm
(Section III), establish its convergence properties (Section IV),
present numerical examples (Section V), and make concluding
remarks (Section VI).

II. Probabilistic Measurement Models
For numerical stability, we normalize the likelihood function

so that the corresponding NLL L.x/ is lower-bounded by zero.

A. Poisson Generalized Linear Model
Generalized linear models (GLMs) with Poisson observations

are often adopted in astronomic, optical, hyperspectral, and
tomographic imaging [3, 4, 35] and are used to model event
counts, e.g., numbers of particles hitting a detector. Assume
that the measurements y D .yn/N

nD1 2 NN
0 are independent

Poisson-distributed1 with means Œ�.x/�n.
Upon normalization, we obtain the generalized Kullback-

Leibler divergence form of the NLL [36]

L.x/ D 1T Œ�.x/ � y�C
X

n;yn¤0

yn ln
yn

Œ�.x/�n
: (16a)

The NLL L.x/ W Rp 7! RC is a convex function of the signal
x. Here, the relationship between the linear predictor ˆx and
the expected value �.x/ of the measurements y is summarized
by the link function g.�/ W RN 7! RN [37]:

E.y/ D �.x/ D g�1.ˆx/: (16b)

Note that cl.domL/ D fx 2 Rp j �.x/ � 0g.
Two typical link functions in the Poisson GLM are log

(described in [38, Sec. I-A2], see also [39]) and identity:

g.�/ D � � b; �.x/ D ˆx C b (17)

used for modeling the photon count in optical imaging and
radiation activity in emission tomography [3, Ch. 9.2], as well
as for astronomical image deconvolution. Here, ˆ 2 RN �p

C and
b 2 RN �1

C are the known sensing matrix and intercept term,
respectively; the intercept b models background radiation and
scattering estimated, e.g., by calibration before the measurements
y have been collected. The nonnegative set C in (2) satisfies
(1), where we have used the fact that the elements of ˆ are
nonnegative. If b has zero components, C ndomL is not empty
and the NLL does not have a Lipschitz-continuous gradient.

B. Linear Model with Gaussian Noise
The linear measurement model with zero-mean additive white

Gaussian noise (AWGN) leads to the following scaled NLL:

L.x/ D 1
2
ky �ˆxk22 (18)

1Here, we use the extended Poisson probability mass function (pmf)
Poisson.y j �/ D .�y=yŠ/ e�� for all � � 0 by defining 00 D 1 to
accommodate the identity-link model.
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Algorithm 1: PNPG iteration

Input: x.0/, u, 
 , b, n, m, � , �, and threshold �

Output: arg minx f .x/

Initialization: x.�1/  0, i  0, �  0, ˇ.1/ by the BB
method
repeat

i  i C 1 and �  � C 1

while true do // backtracking search
evaluate (20a) to (20d)
if xx.i/

… domL then // domain restart
� .i�1/  1 and continue

solve the proximal mapping in (20e)
if majorization condition (21) holds or the number
of backtrackings exceeds tMAX then

break
else

if ˇ.i/ > ˇ.i�1/ then // increase n
n nCm

ˇ.i/  �ˇ.i/ and �  0

if f .x.i// > f .x.i�1// then
if (21) holds then

if xx.i/
¤ x.i�1/ and f .x.i// � f .xx.i// then

// function restart
� .i�1/  1, i  i � 1, and continue

if � > �MIN and f .x.i// > f .xx.i// then
// more accurate proximal

� �=10, i  i � 1, and continue

declare convergence
if convergence cond. (23a) holds with threshold � then

declare convergence
if � � n then // adapt step size

�  0 and ˇ.iC1/  ˇ.i/=�

else
ˇ.iC1/  ˇ.i/

until convergence declared or maximum number of
iterations exceeded

where y 2 RN is the measurement vector, and constant terms
(not functions of x) have been ignored. This NLL belongs to the
Gaussian GLM with identity link without intercept: g.�/ D �.
Here, domL.x/ D Rp , any closed convex C satisfies (1), and
the set C n domL is empty.
Minimization of the objective function (3a) with Gaussian

NLL (18) and penalty (3b) with �.x/ in (4) is an analysis
basis pursuit denoising (BPDN) problem with a convex signal
constraint.

III. Reconstruction Algorithm

We propose a PNPG approach for minimizing (3a) that
combines convex-set projection with Nesterov acceleration [15,
16] and applies adaptive step size to adapt to the local curvature
of the NLL and restart to ensure monotonicity of the resulting
iteration. The pseudo code in Algorithm 1 summarizes our PNPG
method.

Define the quadratic approximation of the NLL L.x/ as

Qˇ .x j xx/ D L.xx/C .x � xx/T
rL.xx/C

1

2ˇ
kx � xxk22 (19)

with step-size tuning constant ˇ > 0. Iteration i of the PNPG
method proceeds as follows:

B.i/
D ˇ.i�1/=ˇ.i/ (20a)

� .i/
D

(
1; i � 1
1


C

p
b C B.i/.� .i�1//2; i > 1

(20b)

‚.i/
D .� .i�1/

� 1/=� .i/ (20c)
xx.i/
D PC

�
x.i�1/

C‚.i/.x.i�1/
� x.i�2//

�
(20d)

x.i/
D proxˇ .i/ur

�
xx.i/
� ˇ.i/

rL.xx.i//
�

(20e)

where ˇ.i/ > 0 is an adaptive step size chosen to satisfy the
majorization condition

L.x.i// � Qˇ .i/.x
.i/
j xx.i// (21)

using a simple adaptation scheme that aims at keeping ˇ.i/ as
large as possible; see also Section III-B and Algorithm 1. Here,


 � 2; b 2 Œ0; 1=4� (22)

in (20b) are momentum tuning constants. We will denote � .i/

as �
.i/


;b
when we wish to emphasize its dependence on 
 and b.

We declare convergence whenp
ı.i/ � �kx.i/

k2 (23a)

where � > 0 is the convergence threshold and ı.i/ is the local
variation of signal iterates:

ı.i/ , kx.i/
� x.i�1/

k
2
2: (23b)

We need B.i/ in (20a) to derive the theoretical guarantee for
the convergence speed of the PNPG iteration and its sequence
convergence. A similar idea for handling the increasing step size
in its TFOCS framework is seen in [18]. However, [18] does
not address this modification in detail or establish convergence
properties of the corresponding method.
The acceleration step (20d) extrapolates the two latest iteration

points in the direction of their difference x.i�1/ � x.i�2/,
followed by the projection onto the convex set C , which has
also been proposed in our preliminary work [8] and in the
variable-metric/scaling method [10]. For nonnegative C in (2),
this projection has closed form; see (6c). If C is an intersection
of convex sets with a simple individual projection operator for
each, we can apply projections onto convex sets (POCS) [6].
For �.x/ in (4), we compute the proximal mapping (20e)

using the dual formulation in (10) and a simpler version of
PNPG, Nesterov’s projected-gradient algorithm, because the
proximal step in this case reduces to projection onto H in
(10c); for the TV penalty, this method is similar to the TV
denoising scheme in [24]. Because of its iterative nature, (20e)
is inexact; this inexactness can be modeled as

x.i/ Ñ".i/ proxˇ .i/ur

�
xx.i/
� ˇ.i/

rL.xx.i//
�

(24)

where ".i/ quantifies the precision of the PG step in Iteration i .
If we remove the convex-set constraint by setting C D Rp ,

iteration (20a)–(20e) reduces to the Nesterov’s proximal-gradient
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iteration with adaptive step size that imposes signal sparsity only
in the analysis form (termed NPGS); see Section V-B for an
illustrative comparison between NPGS and PNPG.
We now extend [16, Lemma 2.3] to the inexact proximal

operation:
Lemma 1: Assume convex and differentiable NLL L.x/ and

convex �.x/, and consider an inexact PG step (24) with step
size ˇ.i/ that satisfies the majorization condition (21). Then,

f .x/ � f .x.i// �
1

2ˇ.i/

�
kx.i/

� xk22 � kxx
.i/
� xk22 � .".i//2

�
(25)

for all i � 1 and any x 2 Rp .
Proof: See Appendix A.

Lemma 1 is general and algorithm independent, because xx.i/

can be any value in domL and we have used only the fact that
step size ˇ.i/ satisfies the majorization condition (21), rather
than depending on specific details of the step-size selection.
We use this result to establish the monotonicity property in
Proposition 3 and to derive and analyze our accelerated PG
scheme.

A. Restart and Monotonicity
If f .xx.i// > f .x.i// > f .x.i�1// or xx.i/

2 C n domL, set

� .i�1/
D 1 (restart), (26)

re-evaluate (20b)–(20e), and refer to this action as function
restart [40] or domain restart, respectively; see Algorithm 1.
Function and domain restarts ensure that the PNPG iteration
is monotonic and xx.i/ remains within dom f as long as the
projected initial value is within dom f : f .PC .x.0/// < C1.
In this paper, we employ PNPG iteration with restart, unless
specified otherwise (e.g., in Theorems 1 and 2 in Section IV).

Proposition 3 (Monotonicity): The inexact PG step (24) is
monotonic:

f .x.i// � f .xx.i// (27a)

if it is sufficiently accurate such that

".i/
� kxx.i/

� x.i/
k2: (27b)

Hence, the PNPG iteration with restart and inexact PG steps
(24) is non-increasing:

f .x.i// � f .x.i�1// (28)

if (27b) holds for all i .
Proof: (27a) is straightforward by plugging x D xx.i/ and

(27b) into (25).
If there is no restart in Iteration i , the objective function has

not increased. If there is a restart, � .i�1/ D 1, (20d) simplifies
to xx.i/

D PC .x.i�1// D x.i�1/, and monotonicity follows due
to xx.i/

D x.i�1/.
To establish the monotonicity in Proposition 3, the step size ˇ.i/

need satisfy only the majorization condition (21).

B. Adaptive Step Size
Define the step-size adaptation parameter

� 2 .0; 1/: (29)

We propose the following adaptive scheme for selecting ˇ.i/:
i) � if there have been no step-size backtracking events or

increase attempts for n consecutive iterations (i � n to
i � 1), start with a larger step size:

x̌.i/
D ˇ.i�1/=� (increase attempt); (30a)

� otherwise start with
x̌.i/
D ˇ.i�1/

I (30b)

ii) (backtracking search) select

ˇ.i/
D � ti x̌.i/ (30c)

where 0 � ti � tMAX is the smallest integer such that (30c)
satisfies (21); backtracking event corresponds to ti > 0.

iii) if max.ˇ.i/; ˇ.i�1// < x̌.i/, increase n by a nonnegative
integer m:

n nCm: (30d)

We select the initial step size x̌.1/ using the BB method [41].
If there has been an attempt to change the step size in any of
the previous n consecutive iterations, we start the backtracking
search ii) with the step size from the latest completed iteration.
Consequently, ˇ.i/ will be approximately piecewise constant as
a function of the iteration index i ; see Fig. 1, which shows
the evolutions of ˇ.i/ for measurements following the Poisson
generalized linear and Gaussian linear models corresponding to
Figs. 4a and 6b in Sections V-A and V-B. To reduce sensitivity
to the choice of the tuning constant n, we increase its value
by m if there is a failed attempt to increase the step size in
Iteration i ; i.e., x̌.i/ > ˇ.i�1/ and ˇ.i/ < x̌.i/.
The adaptive step-size strategy keeps ˇ.i/ as large as possible

subject to (21), which is important not only because the signal
iterate may reach regions of L.x/ with different local Lipschitz
constants, but also because of the varying curvature of L.x/

in different updating directions. For example, a (backtracking-
only) PG-type algorithm with non-adaptive step size would fail
or converge very slowly if the local Lipschitz constant of rL.x/

decreases as the algorithm iterates, because the step size will
not adjust and track this decrease; see also Section V, which
demonstrates the benefits of step-size adaptation.
Setting n D C1 corresponds to step-size backtracking only.

A step-size adaptation scheme with n D m D 0 initializes the
step-size search aggressively, with an increase attempt (30a) in
each iteration.

C. Inner-Iteration Warm Start and Convergence Criteria
For �.x/ in (4), the inner iteration solves (20e) using the

dual problem (10b). Denote by p.i;j / the iterates of the dual
variable p in the j th inner iteration step within Iteration i ; this
inner iteration solves (20e) using (10b). The initial p.i;0/ is the
latest p from Iteration i � 1, which is referred to in [14] as the
warm restart. (The variable metric inexact line-search algorithm
(VMILA) [19] also uses warm restart.)
We consider two convergence criteria. The first tracks local

variation of the signal iterates (23b):

kx.i;j /
� x.i;j �1/

k � �
p

ı.i�1/ (31a)

where � is a tuning constant.
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Fig. 1: Step sizes ˇ.i/ as functions of the number of iterations for Poisson and Gaussian linear models.

The second duality-gap–based criterion relies on the result in
Proposition 2 to guarantee that .� .k/".k//2 decreases at a rate
of O.k�q/ within each iteration segment without restart; this
guarantee allows us to control the decrease of the convergence-
rate upper bound in Section IV. Denote by �i the iteration index
of the latest restart prior to (and excluding) Iteration i (i � 1);
set its initial value �1 D 0. We select the duality-gap based inner-
iteration convergence criterion as (see also (10e) and (11))

G.i;j /

ˇ.i/u �
�
yx

.i;j /
� � �

.i � �i /q.� .i//2
(31b)

where � is a tuning constant and q is the accuracy rate
[14]. Here, G.i;j / and yx.i;j / are the duality gap Ga;�.p.i;j //

and yxa;�.p.i;j // in (11) and (10e) (respectively) for a D

xx.i/
� ˇ.i/rL.xx.i// and � D ˇ.i/u. Without restart (i.e.,

�i � 0) and step-size adaptation, (31b) reduces to the inner-
iteration convergence criterion in [14, Sec. 6.1].
Adjusting �. We use � in (31a)–(31b) to trade off ac-

curacy and speed of the inner iterations. If f .x.i// >

max
�
f .x.i�1//; f .xx.i//

�
indicating that the monotonicity condi-

tion (27b) does not hold, we decrease � by an order of magnitude
(10 times) and re-evaluate (20a)–(20e).

IV. Convergence Analysis

We now bound the convergence rate of the PNPG method
without restart.

Theorem 1 (Convergence of the Objective Function): Assume
that the NLL L.x/ is convex and differentiable, �.x/ is convex,
the closed convex set C satisfies

C � domL (32)

(implying no need for domain restart), and the momentum tuning
constants are within the range (22). Consider the PNPG iteration
without restart with the inexact PG step (24) in place of (20e).
The convergence rate of the PNPG iteration is bounded as
follows: for k � 1,

�.k/
�
kx.0/ � x?k22 C E .k/

2ˇ.k/.� .k//2
(33a)

� 
2 kx.0/ � x?k22 C E .k/

2
�p

ˇ.1/ C
Pk

iD1

p
ˇ.i/

�2
(33b)

where x? is a minimum point of f .x/ and

�.k/ , f .x.k// � f .x?/ (34a)

E .k/ ,
kX

iD1

.� .i/".i//2 (34b)

are the centered objective function and the cumulative error term,
which accounts for the inexact PG steps, respectively.

Proof: See Appendix A for the proof of (33a); then, to
obtain (33b), use

� .k/

q
ˇ.k/ �

1




q
ˇ.k/ C � .k�1/

q
ˇ.k�1/ (35a)

�
1




kX
iD2

q
ˇ.i/ C � .1/

q
ˇ.1/ (35b)

for all k > 1, where (35a) follows from the definitions
of B.k/ and � .k/ in (20a) and (20b), and (35b) follows by
repeated application of the inequality (35a) with k replaced by
k � 1; k � 2; : : : ; 2.

Theorem 1 shows that better initialization, smaller proximal-
mapping approximation error, and larger step sizes .ˇ.i//k

iD1

help lower the convergence-rate upper bounds in (33). This result
motivates our step-size adaptation with the goal of maintaining
large .ˇ.i//k

iD1; see Section III-B. To derive this theorem, we
have used only the fact that the step size ˇ.i/ satisfies the
majorization condition (21), rather than taking advantage of
specific details of the step-size selection.

To minimize the upper bound in (33a), we can select � .i/

to satisfy (A16b) with equality, which corresponds to �
.i/

2;1=4
in

(20b), on the boundary of the feasible region in (22). By (35a),p
ˇ.k/� .k/ and the denominator of the bound in (33a) are strictly

increasing sequences. The upper bound in (33b) is not a function
of b and is minimized with respect to 
 for 
 D 2, given the
fixed step sizes .ˇ.i//C1

iD0 .

Corollary 1: Under the assumptions of Theorem 1, the
convergence of PNPG iteration x.k/ without restart is bounded
as follows:

�.k/
� 
2 kx

.0/ � x?k22 C E .k/

2.k C 1/2ˇmin
(36a)
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for k � 1, provided that

ˇmin ,
C1

min
kD1

ˇ.k/ > 0: (36b)

Proof: Use (33b) and the fact that
p

ˇ.1/C
Pk

iD1

p
ˇ.i/ �

.k C 1/
p

ˇmin.
The assumption (36b) is implied by, and weaker than, the
Lipschitz continuity of rL.x/; indeed, ˇmin > �=L if rL.x/

has a Lipschitz constant L; see also (29).
According to Corollary 1, the PNPG iteration attains the

O.k�2/ convergence rate as long as the step size ˇ.i/ is bounded
away from zero (see (36b)) and the cumulative error term (34b)
converges:

E .C1/ , lim
k!C1

E .k/ < C1 (37)

which requires that .� .k/".k//2 decreases at a rate of O.k�q/

with q > 1. This condition, also key for establishing conver-
gence of iterates in Theorem 2, motivates us to use decreasing
convergence criteria (31a)–(31b) for the inner proximal-mapping
iterations, where (31b) guarantees (37) upon choosing an appro-
priate q.
We now contrast our result in Theorem 1 with existing work

on accommodating inexact proximal mappings in PG schemes.
By recursively generating a function sequence that approximates
the objective function, [14] gives an asymptotic analysis of
the effect of ".i/ on the convergence rate of accelerated PG
methods with inexact proximal mapping. However, no explicit
upper bound is provided for �.k/. Schmidt et al. [13] provide
convergence-rate analysis and an upper bound on �.k/, but their
analysis does not apply here because it relies on fixed step-size
assumption, uses different form of acceleration [13, Prop. 2],
and has no convex-set constraint. Bonettini et al. [19] analyze
the inexactness of proximal mapping but for proximal variable-
metric/scaling methods with O.k�1/ convergence rate for the
objective function.
We now establish convergence of the PNPG iterates.
Theorem 2 (Convergence of Iterates): Assume that
1) the conditions of Theorem 1 hold;
2) E .C1/ exists: (37) holds;
3) the momentum tuning constants .
; b/ satisfy


 > 2; b 2 Œ0; 1=
2�I (38)

4) the step-size sequence .ˇ.i//C1
iD1 is bounded within the

range Œˇmin; ˇmax�, for ˇmin > 0.
Consider the PNPG iteration without restart with the inexact PG
step (24) in place of (20e). Then, the sequence of PNPG iterates
x.i/ converges to a minimizer of f .x/.

Proof: See Appendix B.
Observe that Assumption 3 requires a narrower range of

.
; b/ than (22): indeed (38) is a strict subset of (22). The
intuition is to leave a sufficient gap between the two sides of
(A16a) so that their difference becomes a quantity that is roughly
proportional to the growth of � .i/, which is important for proving
the convergence of signal iterates [42]. Although the momentum
term (20b) with 
 D 2 is optimal in terms of minimizing the
upper bound on the convergence rate (see Theorem 1), it appears
difficult or impossible to prove convergence of the signal iterates

x.i/ for this choice of 
 because, in this case, the gap between
the two sides of (A16a) is upper-bounded by a constant.
Iterate convergence results in [10, 42, 43] apply to momentum-

accelerated methods that require non-increasing step-size se-
quences and do not adjust to the local curvature of the NLL.
Aujol and Dossal [43] analyze both the convergence of the
objective function and the iterates with inexact proximal operator
for B.1/ D 1 and n D 1, i.e., with decreasing step size only,
and for a different (less aggressive) � .i/ than ours in (20b).
Bonettini et al. use the ideas from [42] to establish convergence
of iterates for their variable-metric/scaling approach in [10], but
this analysis does not account for inexact proximal steps.

A. O.k�2/ Convergence Acceleration Approaches
A few variants that accelerate the PG method achieve the

O.k�2/ convergence rate [18, Sec. 5.2]. One competitor pro-
posed by Auslender and Teboulle in [20, Sec. 5] and restated in
[18] where it was referred to as AT, replaces (20d)–(20e) with

xx.i/
D

�
1 �

1

� .i/

�
x.i�1/

C
1

� .i/
zx

.i�1/ (39a)

zx
.i/
D prox�.i/ˇ .i/ur

�
zx

.i�1/
� � .i/ˇ.i/

rL.xx.i//
�

(39b)

x.i/
D

�
1 �

1

� .i/

�
x.i�1/

C
1

� .i/
zx

.i/ (39c)

where � .i/ D �
.i/

2;1=4
in (20b). Here, ˇ.i/ in the TFOCS

implementation [18] is selected using the aggressive search with
n D m D 0.
All intermediate signals in (39a)–(39c) belong to C and do not

require projections onto C . However, as � .i/ increases with i ,
step (39b) becomes unstable, especially when an iterative solver
is needed for its proximal operation. To stabilize its convergence,
AT relies on periodic restart by resetting � .i/ using (26) [18].
However, the period of restart is a tuning parameter that is not
easy to select. For a linear Gaussian model, this period varies
according to the condition number of the sensing matrix ˆ [18],
which is generally unavailable and not easy to compute for large-
scale problems. For other models, there are no guidelines how
to select the restart period.
In Section V, we show that AT converges slowly compared

with PNPG, which justifies the use of projection onto C in (20d)
and (20d)–(20e) instead of (39a)–(39c). PNPG usually runs
uninterrupted (without restart) over long stretches and benefits
from Nesterov’s acceleration within these stretches, which may
explain its better convergence properties compared with AT.
PNPG may also be less sensitive than AT to proximal-step
inaccuracies; we have established convergence-rate bounds for
PNPG that account for inexact proximal steps (see (33) and
(36a)), whereas AT does not yet have such bounds, to the best
of our knowledge.

1) Relationship with FISTA: The PNPG method is a gener-
alized FISTA [16] that accommodates convex constraints, more
general NLLs,2 and (increasing) adaptive step size. In contrast
with PNPG, FISTA has a non-increasing step size ˇ.i/, which
allows for setting B.i/ D 1 in (20b) for all i (see Appendix A-
II); upon setting .
; b/ D .2; 1=4/, this choice yields the
standard FISTA (and Nesterov’s [15]) update. Convergence

2FISTA has been developed for the linear Gaussian model in Section II-B.
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(b) FBP
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(d) TV

Fig. 2: (a) True emission image and (b)–(d) the reconstructions of the emission concentration map.

of signal iterates has not been established for FISTA with
.
; b/ D .2; 1=4/ [44]. Theorem 2 comes close to this goal
because it establishes convergence of iterates of PNPG and
corresponding FISTA for .
; b/ arbitrarily close to .2; 1=4/.
The method in [10] is a variable-metric/scaling version of

FISTA with projection of the extrapolation step to account for
the convex constraints. [21] analyzes a version of FISTA where
the (decreasing) step size is adjusted using a condition in [45]
different from the majorization condition (21), and establishes
objective-function convergence under the assumption that the
step size is lower bounded. As FISTA, [10] and [21] do
not adapt the step size and hence do not adjust to the local
curvature of the NLL.

V. Numerical Examples

We now evaluate our proposed algorithm by means of nu-
merical simulations. We adopt the nonnegative C in (2) and the
`1-norm sparsifying penalty in (4). The PNPG iterations with the
local-variation and duality-gap inner convergence criteria (31a)
and (31b) are labeled PNPG and PNPGd, respectively.
All iterative methods that we compare use the convergence

criterion (23a) with

� D 10�9 (40)

and have the maximum number of iterations Imax D 104. In
the presented examples, PNPG uses momentum tuning constants
.
; b/ D .2; 1=4/ and adaptive step-size parameters n D 4

(unless specified otherwise), m D n, � D 0:8, inner-iteration
convergence constants � D 10�2 and .�; q/ D .1; 1:0001/ for
PNPG and PNPGd (respectively), and maximum number of inner
iterations Jmax D 1000. Here, PNPGd uses q D 1:0001 with
goal to guarantee (37).
We apply the AT method (39) implemented in the TFOCS

package [18] with adaptive step size and a periodic restart
every 200 iterations (tuned for its best performance) and our
proximal mapping. Our inner convergence criteria (31b) cannot
be implemented in the TFOCS package (i.e., it require editing
its code). Hence, we select the proximal mapping that has a
relative-error inner convergence criterion

kp.i;j /
� p.i;j �1/

k2 � �0
kp.i;j /

k2; (41a)

where p.i;j / is the dual variable employed by the inner itera-
tions. This relative-error inner convergence criterion is easy to
incorporate into the TFOCS software package [18] and is already

used by the SPIRAL package; see [46]. Here, we select

�0
D 10�6 (41b)

for both AT and SPIRAL and set their maximum number of
inner iterations to 100.
We apply the CP approach based on [23, Sec. 7.5]:

z prox�1F �

�
zC �1ˆxx

�
(42a)

p PuH .p C �2‰H
xx/ (42b)

xx  2PC

�
x � �

�
ˆT zC Re.‰p/

��
� x (42c)

x  .xx C x/=2 (42d)

obtained by splitting the objective function (3a) into the sum
of F.ˆx/ C uk‰H xk1 and IC .x/, where the first summand
is a convex lower semicontinuous function of ŒˆH ‰�H x and
F.ˆx/ D L.x/. In our examples in Sections V-A and V-B,
F.y/ and its convex conjugate F �.z/ have analytical proximal
operators [23, Sec. 7.4]; hence, CP does not require an inner
iteration. In the original CP algorithm in [27], Chambolle and
Pock select �1 D �2 D � . However, when the difference
between kˆk2 and k‰k2 becomes large, it is hard to find tuning
constants of the form .�1; �2; �/ D .�; �; �/ that ensure fast
convergence of the CP algorithm, which is why we do not
impose �1 D �2 D � here. Another version of CP can be
obtained by associating the regularization parameter u with ‰

instead of the `1-norm function, which leads to replacing uH

with H and ‰; ‰H with u‰; u‰H , respectively, in (42). In this
paper, we adopt the version of CP in (42).
All the numerical examples were performed on a Linux

workstation with an Intel Xeon CPU E31245 (3.30GHz) and
8GB memory. The operating system is Ubuntu 14.04 LTS (64-
bit). The Matlab implementation of the proposed algorithms and
numerical examples is available [47].

A. PET Image Reconstruction from Poisson Measurements
In this example, we adopt the Poisson GLM (16a) with iden-

tity link in (17). Consider PET reconstruction of the 128� 128

concentration map x in Fig. 2a, which represents simulated
radiotracer activity in the human chest. Assume that the cor-
responding 128 � 128 attenuation map � is known, which is
needed to model the attenuation of the gamma rays [35] and
compute the sensing matrix ˆ in this application. We collect
the photons from 90 equally spaced directions over 180°, with
128 radial samples in each direction. Here, we adopt the parallel
strip-integral matrix � [48, Ch. 25.2] and use its implementation
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Fig. 3: Normalized centered objectives as functions of the number of iterations for (a) DWT and (b) TV regularizations.

in the Image Reconstruction Toolbox (IRT) [49] with sensing
matrix

ˆ D w diag
�
expı.���C c/

�
� (43)

where c is a known vector generated using a zero-mean inde-
pendent, identically distributed (i.i.d.) Gaussian sequence with
variance 0:3 to model the detector efficiency variation; w > 0 is
a known scaling constant controlling the expected total number
of detected photons due to electron-positron annihilation; and
1T E.y � b/ D 1T ˆx, which is a signal-to-noise ratio (SNR)
measure. Assume that the background radiation, scattering effect,
and accidental coincidence combined lead to a known (generally
nonzero) intercept term b in the Poisson GLM (17). The
elements of the intercept term have been set to a constant equal
to 10% of the sample mean of ˆxtrue: b D .1T ˆxtrue/=.10N /1.
The above model, choices of parameters in the PET system

setup, and concentration map have been adopted from IRT [49,
emission/em_test_setup.m].
Here, we consider the DWT and isotropic TV sparsifying

transforms. We use the 2-D Haar DWT with 6 decomposition
levels and a full circular mask [50] to construct a sparsifying
dictionary matrix ‰ 2 R12 449 � 14 056 with orthonormal rows,
i.e., ‰‰T D I , which allows efficient inner iteration. We
compare the filtered backprojection (FBP) [35] and PG methods
that aim at minimizing (3) with nonnegative C in (2) and DWT
and TV sparsifying transforms.
We implemented SPIRAL with TV penalty using the cen-

tered NLL term (16a), which improves the numerical stability
compared with the original code in [46]. We do not compare
with SPIRAL that uses DWT penalty because its inner iteration
for the proximal step requires a square orthogonal ‰ (see [4,
Sec. II-B]), which is not the case here. We also compare with
VMILA [19, 51] with both DWT and TV penalties and its default
tuning constants, which yield good performance; hence VMILA
is insensitive to tuning.
In this example, we adopt the following form of the regular-

ization constant u:

u D 10a; (44)

vary a in the range Œ�6; 3� with a grid size of 0.5, and search
for the reconstructions with the best average relative square error
(RSE) performance; here, RSE D kyx � xtruek

2
2=kxtruek

2
2, where

xtrue and yx are the true and reconstructed signals, respectively.
All iterative methods were initialized by FBP reconstructions
implemented by IRT [49].
Figs. 2b-2d show reconstructions and corresponding RSEs for

one random realization of the noise and detector variation c,
with the expected total annihilation photon count (SNR) equal
to 108; the optimal a is 0.5. All sparse reconstruction methods
(PNPG, AT, CP, SPIRAL, and VMILA) perform similarly as
long as they employ the same penalty: the TV sparsity penalty
is superior to its DWT counterpart; see [9, Fig. 6] which shows
average RSEs of different methods as functions of 1T ˆxtrue.
Figs. 3 and 4 show the normalized centered objectives

�.i/=f .x?/ as functions of the number of iterations and CPU
time for the DWT and TV signal sparsity regularizations and
two random realizations of the noise and detector variation with
different total expected photon counts. The legends in Figs. 3b
and 4b apply to Figs. 3a and 4a as well. Fig. 3 examines
the convergence of PNPG as a function of the momentum
tuning constants .
; b/ in (22), using 
 2 f2; 5; 15g and
b 2 f0; 1=4g. For small 
 � 5, there is no significant difference
between different selections and no choice is uniformly the best,
consistent with [42] which considers only b D 0 and non-
adaptive step size. As we increase 
 further (
 D 15), we
observe slower convergence. In the remainder of this section,
we use .
; b/ D .2; 1=4/.
To illustrate the benefits of step-size adaptation, we present

in Fig. 4 the performance of PNPG (n D 1), which does not
adapt to the local curvature of the NLL and has monotonically
non-increasing step sizes ˇ.i/, similar to FISTA. PNPG (n D 4)
outperforms PNPG (n D1) because it uses step-size adaptation;
see also Fig. 1a, which corresponds to Fig. 4a and shows that
the step size of PNPG (n D 4) is consistently larger than that
of PNPG (n D 1). Initializing PNPG iterations by a vector
close to 0 (rather than with FBP) will lead to an even larger
difference in convergence speed between PNPG (n D 1) and
PNPG (n D 4). The advantage of PNPG (n D 4) over the
aggressive PNPG (n D 0) scheme is due to the patient nature of
its step-size adaptation, which leads to a better local majorization
function of the NLL and reduces time spent backtracking. Indeed,
if we do not account for the time spent on each iteration and
only compare the objectives as functions of the iteration index,
then PNPG (n D 4) and PNPG (n D 0) perform similarly;
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Fig. 4: Normalized centered objectives as functions of the CPU time for (a) DWT and (b) TV regularizations.

see [8, Fig. 4]. Although PNPG (n D 0) and AT have the
same step-size selection strategy and O.k�2/ convergence-rate
guarantees, PNPG (n D 0) converges faster; both schemes are
further outperformed by PNPG (n D 4). Fig. 4b shows that
SPIRAL, which does not employ PG step acceleration, takes at
least three times longer than PNPG (n D 4) to reach the same
objective function.
In Fig. 4b, AT and SPIRAL reach the performance floor due

to their fixed inner convergence criterion in (41a); we observe
a performance floor for AT in Fig. 4a as well. Reducing �0

in (41b) will lower this floor, at the cost of slowing down the
two algorithms. This result justifies our convex-set projection in
(20d) for the Nesterov’s acceleration step, shows the superiority
of (20d) over AT’s acceleration in (39a) and (39c), and is
consistent with the results in Section V-B.
PNPGd (n D 4) employs the duality-gap–based inner conver-

gence criterion (31b) with q D 1:0001. Since the goal of using
(31b) is to guarantee (37), this inner criterion is more stringent
and leads to slower overall performance of PNPGd (n D 4)
compared to PNPG (n D 4). Indeed, if we do not account for
the time spent on each iteration and only compare the objectives
as functions of the iteration index, then PNPGd (n D 4) and
PNPG (n D 4) perform similarly with the former slightly better.
The CP method uses the following tuning constants care-

fully selected for this particular problem: .�1; �2; �/ D

.10�6; 1; 10�3/ and .�1; �2; �/ D .10�4; 1; 10�2/ for the DWT
and TV penalties, respectively. CP is sensitive to tuning and a
different selection of .�1; �2; �/ can significantly slow down
its convergence. Initially, CP converges quickly and then slows
down as it approaches the optimum.
Considering its O.k�1/ theoretical convergence rate, VMILA

performs quite well, thanks to its use of the variable-
metric/scaling approach.

B. Skyline Signal Reconstruction from Linear Measurements
We adopt the DWT sparsifying transform and linear measure-

ment model with Gaussian noise in Section II-B where each
column of the sensing matrix ˆ are i.i.d. and drawn from the
uniform distribution on unit sphere. Due to the widespread use
of this measurement model, we can compare a wider range of
methods than in the Poisson PET example in Section V-A.

We have designed a “skyline” signal of length p D 1024

by overlapping magnified and shifted triangle, rectangle, sinu-
soid, and parabola functions; see Fig. 5a. We generate the
noiseless measurements using y D ˆxtrue. The DWT matrix
‰ is constructed using the Daubechies-4 wavelet with three
decomposition levels whose approximation by the 5% largest-
magnitude wavelet coefficients achieves RSE D 98 %. We
compare:
� AT, PNPG, and PNPGd;
� CP with the parameters �2 D �1 [27] and � D 1 with �1

tuned separately for best performance in each experiment;3
� linearly constrained gradient projection method [5], part of
the SPIRAL toolbox [46] and labeled SPIRAL herein;

� the GFB method [25] (see (4)):

z1  z1 C �
�
prox.ru=w/�.2x � z1 � rrL.x// � x

�
(45a)

z2  z2 C �ŒPC .2x � z2 � rrL.x// � x� (45b)
x  wz1 C .1 � w/z2 (45c)

with r D 1:9=kˆk22, � D 1, and w D 0:5 tuned for best
performance; and

� the PDS method [28]:

Nz PŒ�u;u�p .zC �‰T x/ (46a)
Nx  PC

�
x � �rL.x/ � �‰.2Nz � z/

�
(46b)

z zC r.Nz � z/ (46c)
x  x C r. Nx � x/ (46d)

where we choose � D 1=.� C kˆk22=2/ and r D 2 �

0:5kˆk22.��1 � �/�1 with � tuned for best performance,4

all of which aim to solve the generalized analysis BPDN
problem with a convex signal constraint. Here, p0 D p,
‰ 2 Rp�p is an orthogonal matrix (‰‰T D ‰T ‰ D I ),
and prox�� a D ‰ T �.‰T a/ has a closed-form solution (see
(6c)), which simplifies the implementation of the GFB method
((45a), in particular); see the discussion in Section I. The other

3We select �1 D �2 as in [27] because kˆk2 and k‰k2 have approximately
the same scale in this example.

4These choices of � and r are at the boundary of the convergence region in
[28, Th. 3.1]. We have searched for � and r inside this convergence region as
well, but found that the boundary choices that we select are the best, or close
to the best.
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Fig. 5: Nonnegative skyline signal and its PNPG and NPGS reconstructions for N=p D 0:34.

tuning options for SPIRAL, and AT are kept to their default
values, unless specified otherwise.
We initialize the iterative methods by the approximate

minimum-norm estimate: x.0/ D ˆT ŒE.ˆˆT /��1y D

NˆT y=p and select the regularization parameter u as

u D 10aU; U , k‰T
rL.0/k1 (47)

where a is an integer selected from the interval Œ�9;�1� and U

is an upper bound on u of interest. Indeed, the minimum point
x? reduces to 0 if u � U [38, Sec. II-D].
As before, PNPG (n D 4) and PNPG (n D 0) converge at

similar rates as functions of the number of iterations. However,
due to the excessive attempts to increase the step size at every
iteration, PNPG (n D 0) spends more time backtracking and
converges at a slower rate as a function of CPU time compared
with PNPG (n D 4); see also Fig. 1b which corresponds to
Fig. 6b and shows the step sizes as functions of the number of
iterations for a D �4 and N=p D 0:34. Hence, we present only
the performances of PNPG with n D 4 in this section.
Fig. 5 shows the advantage brought by the convex-set non-

negativity signal constraints (2). Figs. 5b and 5c present the
PNPG .a D �5/ and NPGS .a D �4/ reconstructions from
one realization of the linear measurements with N=p D 0:34

and a tuned for the best RSE performance. Recall that NPGS im-
poses signal sparsity only. Here, imposing signal nonnegativity
significantly improves the overall reconstruction and does not
simply rectify the signal values close to zero.
Fig. 6 presents the normalized centered objectives

�.i/=f .x?/ as functions of CPU time for a random realization
of the sensing matrix ˆ with normalized numbers of
measurements N=p D 0:34 and several different regularization
constants a. (For the GFB method, we compute the normalized
centered objectives using PC .x.i// instead of x.i/ in (34a)
because its x.i/ may be outside C .) The legend in Fig. 6c
applies also to Figs. 6a and 6b. To achieve good performance,
CP and PDS need to be manually tuned for each a. CP
and PDS have optimal �1 D �2 equal to 0:01; 0:1; 1 and
0:0026; 0:026; 2:6 for a D �5;�4;�3, respectively.
PNPG and PNPGd have the steepest descent rate, followed by

PNPGd. AT and SPIRAL reach the performance floor around the
relative precision of 10�6 due to their fixed inner convergence
criterion in (41a). The GFB and primal-dual methods, PDS
and CP, are sensitive to the selection of the tuning constants.
After a careful selection of the tuning constants, CP performs
exceptionally well in Figs. 6a and 6b. The performance of

GFB is affected significantly by the value of the regularization
parameter a.

VI. Conclusion

We developed a fast algorithm for reconstructing sparse
signals that belong to a closed convex set by employing a pro-
jected proximal-gradient scheme with Nesterov’s acceleration,
restart, and adaptive step size. We applied the PNPG method to
construct one of the first Nesterov-accelerated proximal-gradient
reconstruction algorithm for Poisson compressed sensing. We
presented integrated derivation of the proposed algorithm and
convergence-rate upper bound that accounts for inexactness of
the proximal operator and also proved convergence of iterates.
Our PNPG approach is computationally efficient compared with
other state-of-the-art methods.

Appendix A
Derivation of Acceleration (20a)–(20d) and

Proofs of Lemma 1 and Theorem 1

We first prove Lemma 1 and then derive the acceleration
(20a)–(20d) and prove Theorem 1.

Proof of Lemma 1: According to Definition 1 and (24),

ur.x/ � ur.x.i//C .x � x.i//T
h
xx.i/
� x.i/

ˇ.i/
� rL.xx.i//

i
�

.".i//2

2ˇ.i/
(A1a)

for any x 2 Rp . Moreover, due to the convexity of L.x/,

L.x/ � L.xx.i//C .x � xx.i//T
rL.xx.i//: (A1b)

Summing (A1a), (A1b), and (21) completes the proof.
The following result from [34, Prop. 3.2.1 in Sec. 3.2] states

that the distance between x and y can be reduced by projecting
them onto a closed convex set C .

Lemma 2 (Projection theorem): The projection mapping onto
a nonempty closed convex set C � Rp is nonexpansive

kPC .x/ � PC .y/k22 � kx � yk22 (A2)

for all x; y 2 Rp .
We now derive the projected Nesterov’s acceleration step

(20b)–(20d) with the goal of selecting the xx.i/ in the proximal
step (20e) that achieves the convergence rate of O.k�2/. This
derivation and convergence-rate proof are inspired by—but are
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Fig. 6: Normalized centered objectives as functions of CPU time for normalized numbers of measurements N=p D 0:34 and
different regularization constants a.

more general than—[16]. We start from (25) with x replaced
by x D x? and x D x.i�1/,

��.i/
�
kx.i/ � x?k22 � kxx

.i/
� x?k22 � .".i//2

2ˇ.i/
(A3a)

�.i�1/
��.i/

�
ı.i/ � kxx.i/

� x.i�1/k22 � .".i//2

2ˇ.i/
(A3b)

and design two coefficient sequences a.i/ > 0 and b.i/ > 0 that
multiply (A3a) and (A3b), respectively, which ultimately leads
to (20a)–(20d) and the convergence-rate guarantee in (33a).

Consider sequences a.i/ > 0 and b.i/ > 0. Multiply them
by (A3a) and (A3b), respectively, add the resulting expressions,
and multiply by ˇ.i/ to obtain

�2ˇ.i/c.i/�.i/
C 2ˇ.i/b.i/�.i�1/

�
1

c.i/



c.i/x.i/
� b.i/x.i�1/

� a.i/x?


2

2

�
1

c.i/
kc.i/
xx.i/
� b.i/x.i�1/

� a.i/x?
k

2
2 � c.i/.".i//2

D c.i/
�
t .i/
� Nt .i/

� .".i//2
�

(A4)

where

c.i/ , a.i/
C b.i/ (A5a)

t .i/ , kx.i/
� z.i/

k
2
2; Nt .i/ , kxx.i/

� z.i/
k

2
2 (A5b)

z.i/ ,
b.i/

c.i/
x.i�1/

C
a.i/

c.i/
x?: (A5c)

We arranged (A4) using completion of squares so that the first
two summands are similar (but with opposite signs), with the
goal of facilitating cancellations as we sum over i . Since we
have control over the sequences a.i/ and b.i/, we impose the
following boundary conditions for i � 1:

c.i�1/t .i�1/
� c.i/ Nt .i/ (A6a)

�.i/
� 0 (A6b)

where

�.i/ , ˇ.i/c.i/
� ˇ.iC1/b.iC1/: (A7)

Now, apply the inequality (A6a) to the right-hand side of (A4):

�2ˇ.i/c.i/�.i/
C 2ˇ.i/b.i/�.i�1/

� c.i/t .i/
� c.i�1/t .i�1/

� c.i/.".i//2 (A8a)

and sum (A8a) over i D 1; 2; : : : ; k, which leads to summand
cancellations and

�2ˇ.k/c.k/�.k/
C 2ˇ.1/b.1/�.0/

� 2

k�1X
iD1

�.i/�.i/

� �c.0/t .0/
�

kX
iD1

c.i/.".i//2 (A8b)

where (A8b) follows by discarding a nonnegative term c.k/t .k/.
Now, due to �.i/�.i/ � 0 (see (34a) and (A6b)), the

inequality (A8b) leads to

�.k/
�

2ˇ.1/b.1/�.0/ C c.0/t .0/ C
Pk

iD1 c.i/.".i//2

2ˇ.k/c.k/
(A9)

with simple upper bound on the right-hand side, thanks to
summand cancellations facilitated by the assumptions (A6).
As long as ˇ.k/c.k/ grows at a rate of k2 and the inexactness

of the proximal mappings leads to bounded
Pk

iD1 c.i/.".i//2, the
centered objective function �.k/ can achieve the desired bound
decrease rate of 1=k2.
In the following section, we show how to satisfy (A6a), which

will lead to the projected momentum acceleration step (20d).
We approach the constraints (A6a) by first aiming to meet them
with equality, which is possible in the absence of the convex-
set constraint (C D Rp). We then use the nonexpansiveness of
the convex-set projection to construct a.i/ and b.i/ that satisfy
(A6a) with inequality in the general case where the convex-set
constraint is present. Finally, we show how to satisfy (A6b),
which will allow us to construct the recursive update of � .i/

in (20b) and verify the allowed range of momentum tuning
constants in (22).

I Satisfying Conditions (A6)
a) Imposing equality in (A6a): (A6a) holds with equality for

all i and any x? when we choose xx.i/
D yx

.i/ that satisfiesp
c.i�1/.x.i�1/

� z.i�1// D
p

c.i/.yx.i/
� z.i//: (A10)



GU AND DOGANDŽIĆ: PROJECTED NESTEROV’S PROXIMAL-GRADIENT ALGORITHM FOR SPARSE SIGNAL RECOVERY 13

Now, (A10) requires equal coefficients multiplying x? on both
sides; thus a.i/=

p
c.i/ D 1=w for all i , where w > 0 is a

constant (not a function of i ), which implies c.i/ D w2.a.i//2

and b.i/ D w2.a.i//2 � a.i/; see also (A5a). Upon defining

� .i/ , w2a.i/ (A11a)

we have

w2c.i/
D .� .i//2

I w2b.i/
D .� .i//2

� � .i/: (A11b)

Plug (A11) into (A10) and reorganize to obtain the following
form of momentum acceleration:

yx
.i/
D x.i�1/

C‚.i/.x.i�1/
� x.i�2//: (A12)

Although xx.i/
D yx

.i/ satisfies (A6a), it is not guaranteed to
be within domL; consequently, the proximal-mapping step for
this selection may not be computable.

b) Selecting xx.i/
2 C that satisfies (A6a): We now seek

xx.i/ within C that satisfies the inequality (A6a). Since x.i�1/

and x? are in C , z.i/ 2 C by the convexity of C ; see (A5c).
According to Lemma 2, projecting (A12) onto C preserves or
reduces the distance between points. Therefore,

xx.i/
D PC .yx.i// (A13)

belongs to C and satisfies the condition (A6a):

c.i�1/t .i�1/
D c.i/

kyx
.i/
� z.i/

k
2
2 (A14a)

� c.i/
kxx.i/

� z.i/
k

2
2 D c.i/ Nt .i/ (A14b)

where (A14a) and (A14b) follow from (A10) and by using
Lemma 2, respectively; see also (A5b).
Without loss of generality, set w D 1 and rewrite and modify

(A7), (A5b), and (A8b) using (A11) to obtain

�.i/
D ˇ.i/.� .i//2

� ˇ.iC1/� .iC1/.� .iC1/
� 1/; i � 1 (A15a)

.� .i//2t .i/
D



� .i/x.i/
� .� .i/

� 1/x.i�1/
� x?



2

2
(A15b)

k�1X
iD1

�.i/�.i/
�

1

2

h
.� .0//2t .0/

C

kX
iD1

.� .i/".i//2
i

(A15c)

where (A15c) is obtained by discarding the negative term
�2ˇ.k/.� .k//2�.k/ and the zero term ˇ.1/� .1/.� .1/ � 1/�.0/

(because � .1/ D 1) on the left-hand side of (A8b). Now, (33a)
follows from (A9) by using � .0/ D � .1/ D 1 (see (20b)), (A11),
and (A15b) with i D 0.

c) Satisfying (A6b): By substituting (A15a) into (A6b), we
obtain the conditions

ˇ.i�1/.� .i�1//2
� ˇ.i/

�
.� .i//2

� � .i/
�

(A16a)

and interpret .�.i//C1
iD1 as the sequence of gaps between the two

sides of (A16a); (A16a) implies

� .i/
� 1=2C

q
1=4C B.i/.� .i�1//2: (A16b)

Comparing (20b) with (A16b) justifies the constraints in (22).

II Connection to Convergence-Rate Analysis of FISTA in [16]
If the step-size sequence .ˇ.i// is non-increasing (e.g., in the

backtracking-only scenario with n D C1), (20b) with B.i/ D

1 also satisfies the inequality (A16b). In this case, (33a) still
holds but (33b) does not because (35) no longer holds. However,
because B.i/ D 1, we have � .k/ � .k C 1/=
 and

�.k/
� 
2 kx

.0/ � x?k22 C E .k/

2ˇ.k/.k C 1/2
(A17)

which generalizes [16, Th. 4.4] to include the inexactness of the
proximal operator and the convex-set projection.

Appendix B
Convergence of Iterates

To prove convergence of iterates, we need to show that the
centered objective function �.k/ decreases faster than the right-
hand side of (33b). We introduce Lemmas 3 and 4 and then
use them to prove Theorem 2. Throughout this Appendix, we
assume that Assumption 1 of Theorem 2 holds, which justifies
(A3) and (A16) as well as results from Appendix A that we use
in the proofs.

Lemma 3: Under Assumptions 1–3 of Theorem 2,
C1X
iD1

.2� .i/
� 1/ı.i/ < C1: (B1)

Proof: By letting k !C1 in (A15c) and using (37), we
obtain

C1X
iD1

�.i/�.i/ < C1: (B2)

For i � 1, rewrite (A15a) using � .i/ expressed in terms of
� .iC1/ (based on (20b)):

�.i/
D

ˇ.iC1/




�
.
 � 2/� .iC1/

C .1 � b
2/=

�

�

 � 2



ˇ.iC1/� .iC1/ (B3)

where the inequality in (B3) is due to b
2 � 1 < 0; see As-
sumption 3. Apply nonexpansiveness of the projection operator
to (A3b) and use (A12) to obtain

2ˇ.i/.�.i�1/
��.i// � ı.i/

� .‚.i//2ı.i�1/
� .".i//2

I (B4)

then multiply both sides of (B4) by .� .i//2, sum over i D

1; 2; : : : ; k and reorganize:
k�1X
iD1

.2� .i/
� 1/ı.i/

� .� .0/
� 1/2ı.0/

� .� .k//2ı.k/
C E .k/

C 2ˇ.1/�.0/
� 2ˇ.k/.� .k//2�.k/

C 2

k�1X
iD1

%.i/�.i/ (B5a)

� E .k/
C 2ˇ.1/�.0/

C
4


 � 2

k�1X
iD1

�.i/�.i/ (B5b)

where (see (A15a))

%.i/ , ˇ.iC1/.� .iC1//2
� ˇ.i/.� .i//2 (B5c)

D ˇ.iC1/� .iC1/
� �.i/; (B5d)

and we drop the zero term .� .0/�1/2ı.0/ and the negative term
�.� .k//2ı.k/ � 2ˇ.k/.� .k//2�.k/ from (B5a) and use the fact
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that %.i/ � Œ2=.
 � 2/��.i/ implied by (B3) to obtain (B5b).
Finally, let k ! C1 and use (37) and (B2) to conclude (B1).

Lemma 4: For j � 3,

…j ,
C1X
kDj

kY
`Dj

‚.`/
� 
� .j �1/

� 1: (B6)

Proof: For j � 3,
1p

ˇ.k�1/� .k�1/� .k/
�


p
ˇ.k�1/� .k�1/

�

p

ˇ.k/� .k/
(B7a)

�

p

ˇ.k�2/� .k�2/
�


p
ˇ.k/� .k/

(B7b)

where we obtain the inequality (B7a) by combining the terms
on the right-hand size and using (35a) and (B7b) holds becausep

ˇ.k/� .k/ is an increasing sequence (see Section IV). Now,

…j �

C1X
kDj

kY
`Dj

ˇ.`�2/.� .`�2//2

ˇ.`�1/� .`�1/� .`/
D

C1X
kDj

ˇ.j �2/.� .j �2//2� .j �1/

ˇ.k�1/.� .k�1//2� .k/

(B8a)

�

ˇ.j �2/.� .j �2//2� .j �1/p

ˇ.j �2/� .j �2/
p

ˇ.j �1/� .j �1/
D 


p
B.j �1/� .j �2/ (B8b)

where (B8a) follows by using (20c), (A16a) with i D ` � 1,
and fraction-term cancellation; (B8b) is obtained by substituting
(B7b) into (B8a) and canceling summation terms. (B8b) implies
(B6) by using (35a) with k D j � 1.
Define

�.i/ , kx.i/
� x?

k
2
2; ƒ.i/ , �.i/

� �.i�1/: (B9)

Since f .x.i// converges to f .x?/ D minx f .x/ as the iteration
index i grows and x? is a minimizer, it is sufficient to prove
the convergence of �.i/; see [42, Th. 4.1].

Proof of Theorem 2: Use (A3a) and �.i/ � 0 to obtain

0 � �.i/
� kxx.i/

� x?
k

2
2 � .".i//2: (B10)

Now,

kxx.i/
� x?

k
2
2 � kyx

.i/
� x?

k
2
2 D �.i�1/

C .‚.i//2ı.i�1/

C 2‚.i/.x.i�1/
� x?/T .x.i�1/

� x.i�2// (B11a)
� �.i�1/

C .‚.i//2ı.i�1/
C‚.i/.ƒ.i�1/

C ı.i�1// (B11b)

where (B11a) and (B11b) follow by using the nonexpansiveness
of the projection operator (see also (A12)) and the identity

2.a � b/T .a � c/ D ka � bk22 C ka � ck22 � kb � ck22 (B12)

respectively. Combine the inequalities (B11b) and (B10) to get

ƒ.i/
� ‚.i/

�
ƒ.i�1/

C .‚.i/
C 1/ı.i�1/

�
C .".i//2 (B13a)

� ‚.i/.ƒ.i�1/
C 2ı.i�1/=�/C .".i//2 (B13b)

where (B13b) is due to 1 < 1=� (see (29)) and the following:

‚.i/ <
� .i�1/

� .i/
D

p
ˇ.i�1/� .i�1/

p
ˇ.i/p

ˇ.i/� .i/
p

ˇ.i�1/
(B14a)

<

p
ˇ.i/p

ˇ.i�1/
�

1p
�

<
1

�
(B14b)

where we have used (20c), the fact that
p

ˇ.i/� .i/ is an
increasing sequence, ˇ.i/=ˇ.i�1/ � 1=� (see Section III-B), and
(29).
According to (35b) and the fact that the sequence .ˇ.i// is

bounded (by Assumption 4), there exists an integer J such that

� .j �1/
� 2; ‚.j /

�
1

� .j /
> 0 (B15)

for all j � J , where the second inequality follows from the
first and the definition of ‚.j /; see (20c). Then

�.i/ , max.0; ƒ.i//

� ‚.i/

�
�.i�1/

C
2ı.i�1/

�
C

.".i//2

‚.i/

�
(B16a)

�

iX
j DJ

�
2ı.j �1/

�
C

.".j //2

‚.j /

� iY
`Dj

‚.`/

C�.J �1/

iY
`DJ

‚.`/ (B16b)

for i � J , where the inequality in (B16a) follows by combining
the inequalities (B13b) and �.i�1/ � ƒ.i�1/, and (B16b) fol-
lows by recursively applying inequality (B16a) with i replaced
by i � 1; i � 2; : : : ; J . Now, sum the inequalities (B16b) over
i D J; J C 1; : : : ;C1 and exchange the order of summation
over i and j on the right-hand side (see also (B6)):
C1X
iDJ

�.i/
�

C1X
j DJ

…j

�
2ı.j �1/

�
C

.".j //2

‚.j /

�
C…J �.J �1/: (B17)

For j � J � 3,


.2� .j �1/
� 1/ �…j � 
.� .j �1/

� 1/C 1 > 0 (B18a)
2
.� .j �1/

� 1/ �…j � 
.� .j �1/
� 2/C 1 > 0 (B18b)

where the first and second inequalities in (B18) follow by
applying Lemma 4 and (B15), respectively; consequently,

C1X
j DJ

…j ı.j �1/
� 


C1X
j DJ

.2� .j /
� 1/ı.j / < C1 (B19a)

C1X
j DJ

…j

.".j //2

‚.j /
� 2


C1X
j DJ

.".j //2 � .j �1/ � 1

‚.j /
(B19b)

D 2


C1X
j DJ

.".j //2� .j / (B19c)

� 2


C1X
j DJ

.� .j /".j //2 (B19d)

where (B19a) follows from (B18a) and Lemma 3 (for the second
inequality) and (B19b) follows by using (B18b); (B19c) and
(B19d) are due to (20c) and (B15), respectively. Combine (B19a)
and (B19d) with (B17) to conclude that

C1X
iD1

�.i/ < C1: (B20)

The remainder of the proof uses the technique employed by
Chambolle and Dossal to conclude the proof of [42, Th. 4.1,
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p. 978], which we repeat for completeness. Define X .i/ ,
�.i/ �

Pi
j D1 �.j /, which is lower bounded because �.i/ andPi

j D1 �.j / are lower and upper bounded, respectively; see (B9)
and (B20). Furthermore, .X .i// is an non-increasing sequence:

X .iC1/
D �.iC1/

��.iC1/
�

iX
j D1

�.j /
� X .i/; (B21)

where we used the fact that �.iC1/ � ƒ.iC1/ D �.iC1/ �

�.i/. Hence, .X .i// converges as i ! C1. Since
Pi

j D1 �.j /

converges, .�.i// also converges.
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